1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
1			2	M1 for correct intersecting arcs A1 for correct angle bisector
2	$\begin{aligned} & \text { P: T: } \mathrm{B}=1: 3: 6 \\ & 54 \div 10 \times 6 \\ & \text { OR } \\ & \text { e.g. } \\ & \mathrm{T}=3 \mathrm{P} \\ & \mathrm{~B}=2 \mathrm{~T} \\ & \mathrm{So}, \mathrm{~B}=2(3 \mathrm{P})=6 \mathrm{P} \\ & \mathrm{P}+\mathrm{T}+\mathrm{B}=\mathrm{P}+3 \mathrm{P}+6 \mathrm{P}=10 \mathrm{P} \\ & \mathrm{P}=54 \div 10=£ 5.40 \\ & \mathrm{~B}=6 \times £ 5.40 \end{aligned}$	32.40	3	M1 for $1: 3: 6$ or any three numbers in the ratio $1: 3: 6$ in any order M1 for $54 \div(1+3+6) \times 6$ A1 for 32.4(0) Alternative: M1 for 1:3:6 oe or $\mathrm{P}+3 \mathrm{P}+6 \mathrm{P}(=10 \mathrm{P})$ oe, e.g. $\mathrm{T} / 3+\mathrm{T}+2 \mathrm{~T}(=10 \mathrm{~T} / 3)$ or e.g. $B / 6+B / 2+B(=10 B / 6)$ or $5.4(0)$ or $16.2(0)$ seen M1 for $54 \div 10 \times 6$ or [54 $\left.\frac{\frac{母}{}^{\prime} 10}{3^{\prime}}\right] \times 2$ or $54 \frac{\div^{\prime} \mathbf{1 0}}{\mathbf{6}^{\prime}}$ oe A1 for 32.4(0) OR M1 for a partial decomposition of $£ 54$ in ratio 1:3:6, e.g. (£)5 $+(£) 15+(£) 30(=(£) 50)$ M1 for a decomposition of the remaining amount in ratio 1:3:6, e.g. 40 (p) +120 (p) $+240(=400(p))$ A1 for 32.4(0)

1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
					(M1 for $y=4-x$ or line drawn with gradient of -1 or line drawn with a y intercept of 4 and a negative gradient) A1 for correct line between $x=-2$ and $x=5$
4			Proof	4	M1 for setting up a correct equation in x, eg. $3 x-2=x+1$ M1 (dep) for a fully correct method to solve their equation or for $x=1.5$ M1 (dep) for $(" 1.5$ " +1$) \times 4$ or $(3 \times 1.5 "-2) \times 4$ or $(3 \times 1.5$ " -2$) \times 2+(" 1.5 "+1) \times 2$ C 1 (dep on M3) for completing the proof resulting in a perimeter of 10 OR M1 for setting up a correct equation in x, eg. $2(3 x-2)+2(x+1)=10$ M1 (dep) for a fully correct method to solve their equation or for $x=1.5$ M1 (dep) for " $1.5 "+1$ and $3 \times 1.5 "-2$ C 1 (dep on M3) for completing the proof resulting in a justification that the shape is a square

| 1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme - Version 1.0 | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Question | Working | Answer | Mark | Notes |

1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme - Version 1.0					
	ion	Working	Answer	Mark	Notes
7	(a) (b)	$\frac{8}{20}+\frac{5}{20}$ $\frac{25}{8} \times \frac{12}{5}$	$\frac{13}{20}$ $\frac{15}{2}$		M1 for both fractions expressed with a suitable common denominator (multiple of 20) and at least one of the two fractions correct Al for $\frac{13}{20}$ oe or M1 for $0.4+0.25$ A1 for 0.65 or M1 for table structure, all cells correct A1 for $13 / 20$ oe M1 for a correct method to convert to improper fractions or $\frac{(3 \times 8+1)}{8}$ M1 (dep) for A1 for or $\frac{15}{2}$ or 7.5 (SC: B2 for 7.5)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme - Version 1.0} \\
\hline \& tion \& Working \& Answer \& Mark \& Notes \\
\hline 9 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 11+3=6 y+4 y \\
\& 14=10 y
\end{aligned}
\]
\[
(x-8)(x+5)
\] \\
OR
\[
\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times 1 \times-40}}{2 \times 1}
\]
\[
\frac{3 \pm \sqrt{169}}{2}=\frac{3 \pm 13}{2}
\]
\end{tabular} \& 1.4
\[
8,-5
\] \& 2

3 \& | M1 for collecting the y terms or the numbers on one side of equation, |
| :--- |
| eg $11=6 y-3+4 y$ or $11-4 y+3=6 y$ |
| A1 for 1.4 or $\frac{14}{10}$ oe |
| M2 for $(x-8)(x+5)$ |
| (M1 for $(x \pm 8)(x \pm 5)$ |
| A1 cao 8 and -5 |
| OR |
| M1 for correct substitution in formula of $a=1, b= \pm 3$ and $c= \pm 40$ |
| M1 for reduction to $\frac{3 \pm \sqrt{169}}{2}$ |
| A1 cao 8 and -5 | \\

\hline
\end{tabular}

1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
12	(a) (b) (c) (d)		$\begin{gathered} \hline 3 \\ \frac{1}{2} \\ 4 \\ 6 \end{gathered}$		B1 for 3 (accept ± 3, but not -3 alone) B1 for $\frac{1}{2}(=0.5)$ B1 cao M1 for using $8=2^{3}$ M1 for deriving a correct equation in m A1 cao
13		Boys Girls Median: 115 112 Range: 41 33 IQR: 17 9	Comparison of data	4	B1 for correct median for girls or boys B1 for any correct range or IQR C1 for a correct comparison of the medians C 1 ft for a correct comparison of the ranges or IQRs For the award of both C marks at least one of the comparisons made must be in the context of the question and all figures used for comparisons correct. OR B2 for an accurately drawn boxplot (superimposed) C 1 for a correct comparison of the medians C 1 for a correct comparison of the ranges or IQRs For the award of both C marks at least one of the comparisons made must be in the context of the question

1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
14	(a) (b) (c)		$\begin{gathered} 820000 \\ 3.76 \times 10^{-4} \\ 5 \times 10^{8} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao B1 cao M1 for $2.3 \div 4.6 \times 10^{12-3}$ oe or 500000000 or 0.5×10^{9} A1 cao (accept 5.0×10^{8}
15			$\frac{3 \mathbf{b}-\mathbf{c}}{4}$	4	M 1 for $\overrightarrow{C D}=\overrightarrow{C O}+\overrightarrow{O B}+\overrightarrow{B D}$ M1 (indep) for $\overrightarrow{C O}+\overrightarrow{O B}=-\mathbf{c}+\mathbf{b}$ or $\overrightarrow{B A}=-\mathbf{b}+3 \mathbf{c}$ M1 for $-\mathbf{c}+\mathbf{b}+\frac{1}{4}(-\mathbf{b}+3 \mathbf{c})$ A1 for $\frac{3 \mathrm{~b}-\mathbf{c}}{4}$ OR M1 for $\overrightarrow{C D}=\overrightarrow{C A}+\overrightarrow{A D}$ M1 (indep) for $\overrightarrow{C A}=2 \mathbf{c}$ or $\overrightarrow{A B}=-3 \mathbf{c}+\mathbf{b}$ M1 for $2 \mathbf{c}+\frac{3}{4}(-3 \mathbf{c}+\mathbf{b})$ A1 for $\frac{3 \mathbf{b - c}}{4}$
16	(a) (b) (c)	$\begin{aligned} & \hline 1-0.3 \\ & 0.3+0.5 \\ & 0.2 \times 0.4=0.08 \end{aligned}$	0.7 0.8 Not independent	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 0.7 oe B1 0.8 oe M1 for $0.2 \times 0.4(=0.08)$

1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
	$0.08 \neq 0.06$	with reason		C1 for 0.08 and stating events not independent
17	$\frac{(2 x-1)(x+5)}{(2 x-1)(3 x-1)}$	$\frac{x+5}{3 x-1}$	3	M1 for factorizing the numerator correctly M1 for factorizing the denominator correctly A1 for $\frac{x+5}{3 x-1}$
18	$A C B=90^{\circ}$ angle in a semi circle $C B D=180-A C B \text { co }-$ interior angles add to 180° $\begin{aligned} & C B D=90^{\circ} \\ & D C B=C D B= \\ & \left(180^{\circ}-90^{\circ}\right) \div 2 \end{aligned}$ base angles of an isosceles triangles	45	4	B1 $A C B=90$ (could be on the diagram) or 45 seen in a correct position on the diagram B1 answer of 45 B1 angle in a semicircle $=90$ B1 base angles isosceles triangle are equal or alternate angles are equal
19		E, B, F, C, D, A	3	B3 all correct (B2 4,5 correct) (B1 2 or 3 correct)
20	$3-\sqrt{2}+3 \sqrt{2}-\sqrt{2} \sqrt{2}$	$1+2 \sqrt{2}$	2	M1 for 4 terms correct ignoring signs or 3 out of no more than 4 terms correct A1 cao

1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
21	(a)	$\begin{aligned} & (a+1)^{2}=a^{2}+2 a+1 \\ & \neq a^{2}+1 \end{aligned}$ OR Pick any non-zero value of a and show that LHS \neq RHS OR $(a+1)^{2}=a^{2}+2 a+1$ Solves $a^{2}+2 a+1=a^{2}+1$ to get $a=0$ and indicates a contradiction	Correctly shown	2	M1 for $(a+1)^{2}=a^{2}+2 a+1$ or $\mathrm{a}^{2}+a+a+1$ (Expansion must be correct but may not be simplified) A1 for statement that $a^{2}+2 a+1 \neq a^{2}+1$ (eg. they are different) OR M1 for correct substitution of any integer into both expressions eg. $(2+1)^{2}$ and $2^{2}+1$ A1 for correct evaluation of both expressions and statement that they are not equal (eg. they are different) OR $\operatorname{M1}(a+1)^{2}=a^{2}+2 a+1$ or $a^{2}+a+a+1$ A1 Solves $a^{2}+2 a+1=a^{2}+1$ to get $a=0$ and indicates a contradiction
	(b)	$a^{2}+2 a+1+b^{2}+2 b+1=c^{2} .$ But $a^{2}+b^{2}=c^{2}$ So $2 a+2 b+1=2 c$	AG	3	M1 use of Pythagoras in either triangle - one of $a^{2}+b^{2}=c^{2}$ or $(a+1)^{2}+(b+1)^{2}=(c+1)^{2}$ A1 $a^{2}+2 a+1+b^{2}+2 b+1=c^{2}+2 c+1$ and $a^{2}+b^{2}=c^{2}$ A1 $2 a+2 b+1=2 c$
	(c)	LHS is odd, RHS is even	Explanation	1	B1 eg. LHS is odd, RHS is even or one side is odd and the other side is even oe

National performance data from Results Plus

	Original source of questions				Topic	$\begin{gathered} \text { Max } \\ \text { score } \\ \hline \end{gathered}$	Mean score of students achieving grade:						
Qn	Spec	Paper	Session YYMM	Qn			ALL	A*	A	B	C	D	E
1	2540	1F	0811	Q25	Constructions	2	0.15				0.36	0.12	0.05
2	1380	1F	1106	Q27	Ratio	3	0.27				0.75	0.29	0.10
3	1380	1F	1011	Q21	Graphs of linear equations	3	0.59				1.45	0.48	0.12
4	5MM1	1H	1411	Q09	Solve linear equations	4	2.07	3.57	2.93	2.47	1.52	0.77	0.20
5	1MA0	1H	1411	Q07	Perimeter and area	4	1.38	3.85	3.56	2.93	1.51	0.68	0.29
6	1380	1H	906	Q10	Compound measures	3	2.20	2.86	2.57	2.20	1.88	1.49	0.99
7	5MM1	1H	1311	Q13	Fractions	5	2.87	4.72	4.20	3.32	2.20	0.93	0.12
8	1387	31	0711	Q13	Ratio	5	2.48			4.30	3.07	1.65	0.78
9	5MM1	1H	1211	Q15	Solve quadratic equations	5	2.32	4.94	4.63	3.62	1.47	0.47	0.00
10	5MM1	1H	1206	Q20	Selection with or without replacement	4	1.68	3.65	2.88	1.74	0.51	0.17	0.00
11	5MM1	1H	1111	Q11	Angles	2	0.80	1.50	1.73	0.98	0.18	0.00	0.00
12	5MM1	1H	1411	Q17	Index laws	6	2.32	5.70	3.87	2.33	1.30	0.52	0.10
13	1MA0	1H	1611	Q18	Box plots	4	Data to be added January 2017						
14	1MA0	1H	1303	Q16	Standard form	4	1.18	3.27	2.48	1.68	0.91	0.35	0.09
15	5MM1	1H	1411	Q23	Vectors	4	1.10	3.85	2.12	1.03	0.17	0.03	0.00
16	5MM1	1H	1211	Q23	Venn diagrams	4	1.03	1.82	1.33	0.87	0.57	0.40	0.00
17	5MM1	1H	1411	Q22	Simplify algebraic fractions	3	0.70	2.96	1.68	0.37	0.02	0.00	0.00
18	1380	1H	1111	Q19	Circle theorems	4	0.93	3.21	2.33	1.39	0.55	0.18	0.11
19	1380	1H	1203	Q20	Graphs of trigonometric functions	3	0.67	2.14	1.26	0.70	0.38	0.23	0.19
20	1MA0	1H	1411	Q21	Surds	2	0.28	1.85	1.58	0.83	0.16	0.03	0.01
21	1380	1H	1203	Q24	Algebraic proof	6	0.54	2.55	1.27	0.56	0.16	0.03	0.02
					TOTAL	80							

