1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
1.	$4.5 \times 1000 \times 1000$	4500000	2	M1 for complete method equivalent to $4.5 \times 1000 \times 1000$ A1 for 4500000 oe
2.		195	2	M1 for $325 \div(8-3)(=65)$ A1 cao

1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
6.		12	4	$\begin{aligned} & \text { M1 } x, \frac{x}{2}, \frac{x}{2}-5,9 \\ & \text { M1 } x+\frac{x}{2}+\frac{x}{2}-5+9<30 \end{aligned}$ M1 correct method to isolate x A1 cao
7.	(100% - 10\%) • Normal Price $=£ 4.86$ Normal Price $=£ 4.86 \div 0.9$	$£ 5.40$	3	M1 for ' 4.86 is 90% ' or $(100 \%-10 \%) \cdot$ Normal Price $=4.86$ or $4.86 \div 90$ M1 for $4.86 \div 0.9$ or $4.86 \cdot 10 \div 9$ oe A1 $£ 5.40$ (accept 5.4) OR M1 $10 \%=£ 0.54$ or $£ 4.86 \div 9$ M1 (dep) $£ 4.86+‘ £ 0.54 ’$ A1 $£ 5.40$ (accept 5.4)

1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
9.	(a)	$(3 x+2)(2 x+1)=100$		2	M1 or $(2 x \times 3 x)+2(2 x+1)+3 x=100$ oe
					or $(2 x \cdot 3 x)+(2 \times 2 x(\cdot 1))+1)+3 x+1+1=100$ oe
		$6 x^{2}+4 x+3 x+2=100$	$6 x^{2}+7 x-98=0 *$		other partitions are acceptable but partitioning must go on to form a correct equation.
					A1 Accept $6 x^{2}+7 x+2=100$ if M1 awarded
	(b)	$(3 x+14)(2 x-7)(=0)$	73.5	5	$\text { M2 } \quad \text { or }(x=) \frac{-7 \pm \sqrt{49}+2352}{12} \text { or }(x=) \frac{-7 \pm \sqrt{2401}}{12}$
					If not M2 then M1 for ($3 x \pm 14$ ($2 x \pm 7)$
					or $(x=) \frac{-7 \pm \sqrt{7^{2}-4 \times 6 \times-98}}{2 \times 6}$
					condone + in place of \pm and 1 sign error.
		(Area $=$) 6 x " 3.5 " 2			A1 Dependent on at least M1 Ignore negative root.
		$(3 \cdot " 3.5) \cdot(2 \cdot " 3.5 ")$			M1ft Dependent on at least M1 and $\mathrm{x}>0$
					A1 cao Dependent on first M1

1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme - Version 1.0					
Que	tion	Working	Answer	Mark	Notes
12.	(a) (b)	$\left((9)^{\frac{3}{2}}=\right) 27 \text { or } 2.7$ $27 \times 10^{3 n} \text { oe }$	3×10^{m} $2.7 \cdot 10^{3 n+1}$	2 3	B2 (B1 for $3 \times \sqrt{10^{2 m}}$ or $3 \times 10^{k m}$ where $k \neq 1$ or a $\times 10^{m}$ where $a \neq 3$) B1 M1 A1
13.		$\begin{array}{\|l} \hline 3.5^{2}+10^{2}(=112.25) \text { or } \\ 6^{2}+3.5^{2}+10^{2}(=148.25) \\ \sqrt{" 112.25 " 1}(=10.59 . .) \text { or } \\ \sqrt{" 148.25 "}(=12.17 . .) \\ \tan (" x ")=6 / " 10.59 . . " \\ \text { or } \sin (" x ")=6 / " 12.17 . . " \end{array}$	29.5	4	M1 M1 \quad awrt 10.6 or 12.17 M1 (dep on M1M1) A1 \quad awrt 29.5

1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
14.		$35.5 \cdot 26.5$	940.75	3	B1 for sight of 35.5 or 26.5 or $35.4999(\ldots)$ or $26.4999(\ldots)$ M1 for UB length \times UB width where $\begin{aligned} & 35.49 \leq \text { UB length } \leq 35.5 \\ & 26.49 \leq \text { UB width } \leq 26.5 \end{aligned}$ A1 for 940.74-940.75 (or $\frac{3763}{4}$)
15.			$\frac{4}{5} \text { oe }$	1	B1
	(b)		$\frac{1}{x}$	2	$\text { M1 } \frac{1}{(\sqrt{x-1})^{2}+1} \text { or } \frac{1}{x-1+1}$ A1 (Also accept x^{-1})

1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
17.			565or 566	5	M1 for using other than a linear relationship attempt to establish Month 1 population as $100 \times x$ oe. $\operatorname{eg} 100\left(1+\frac{r}{100}\right)$ M1 for forming equation $100 x^{2}=200$ oe. eg. $100\left(1+\frac{r}{100}\right)^{2}=200$ M1 for method to solve equation to establish $x=\sqrt{ } 2$ M1 for attempting to find Month 5 population e.g. $100 \times \sqrt{2^{5}}$ oe A1 for 565 or 566 given as answer dependent on working seen Or M1 for realising that population doubles in 2 months in a nonlinear relationship, e.g. month $4=400$, month $6=800$, etc. M1 for forming the equation $2=x^{2}$ or $x=\sqrt{ } 2$ M1 for method to solve equation to establish $x=\sqrt{ } 2$ M1 for attempting to find Month 5 population is $100 \times \sqrt{ }{ }^{5}$ A1 for 565 or 566 given as answer dependent on working seen Or M1 for establishing population is of form $N=A b^{t}$ oe M1 for substituting $t=0, N=100$ gives $100=A x^{0}$ or $A=100$

1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
					M1 for substituting $t=2, n=200$ gives $200=100 x^{2}$ and $x^{2}=2$ so $x=\sqrt{2}$ M1 for attempting to find Month 5 population is $100 \times \sqrt{ }{ }^{5}$ A1 for 565 or 566 given as answer dependent on working seen
18.	(a) (b)	$\begin{aligned} & \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \\ & \overrightarrow{O P}=\mathbf{a}+\frac{3}{5}(\mathbf{b}-\mathbf{a}) \\ & \overrightarrow{O P}=\frac{1}{5}(2 \mathbf{a}+3 \mathbf{b}) \end{aligned}$	$\mathbf{b}-\mathbf{a}$ proof		B1 for $\mathbf{b}-\mathbf{a}$ or $-\mathbf{a}+\mathbf{b}$ oe M1 for $\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}$ oe or $\overrightarrow{O P}=\overrightarrow{O B}+\overrightarrow{B P}$ oe M1 for $\overrightarrow{A P}=\frac{3}{5}(\mathbf{b}-\mathbf{a})$ oe or $\overrightarrow{B P}=\frac{2}{5}(\mathbf{a}-\mathbf{b})$ oe A1 for $\mathbf{a}+\frac{3}{5}(\mathbf{b}-\mathbf{a})$ or $\mathbf{b}+\frac{2}{5}(\mathbf{a}-\mathbf{b})$ oe leading to given answer with correct expansion of brackets seen
19.		$\begin{aligned} & \left(4 n^{2}+2 n+2 n+1\right) \\ & \quad-(2 n+1) \\ = & 4 n^{2}+4 n+1-2 n-1 \\ = & 4 n^{2}+2 n \end{aligned}$	Proof	3	M1 for 3 out of 4 terms correct in the expansion of $(2 n+1)^{2}$ or $(2 n+1)\{(2 n+1)-1\}$ A1 for $4 n^{2}+2 n$ or equivalent expression in factorised form C 1 for convincing statement using $2 n(2 n+1)$ or $2\left(2 n^{2}+n\right)$ or $4 n^{2}+2 n$ to prove the result

1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme - Version 1.0									
Question	Working	Answer	Mark						
						$=2 n(2 n+1)$			

National performance data from Results Plus

	Original source of questions				Topic	$\begin{gathered} \text { Max } \\ \text { score } \end{gathered}$	ALL	Mean score of students achieving grade:					
Qn	Spec	Paper	Session YYMM	Qn				A*	A	B	C	D	E
1	5MB3	3H	1303	Q09b	Conversions	2	0.26	1.40	0.54	0.14	0.03	0.02	0.05
2	NEW				Ratio	2							
3	5AM1	1H	1206	Q15	Simultaneous equations	5	3.05	4.91	4.66	3.60	1.43	0.36	0.00
4	5MM2	2 H	1106	Q08	Interior and exterior angles	3	1.08	2.81	2.13	0.95	0.41	0.09	0.00
5	1MA0	2 H	1306	Q14	Compound interest	4	2.22	3.69	3.34	2.79	1.94	0.97	0.23
6	5AM2	2 H	1311	Q15	Solve inequalities	4	2.71	3.68	3.10	2.94	2.13	1.96	3.00
7	1380	2 H	1106	Q16	Reverse percentages	3	1.41	2.91	2.29	1.41	0.65	0.21	0.05
8	5AM1	1H	1211	Q12	Cumulative frequency diagrams	7	3.79	6.00	4.40	2.89	1.66	0.73	
9	4MA0	2 H	1401	Q18	Solve quadratic equations	7	3.46	6.31	4.20	2.00	0.45	0.14	0.00
10	5MM2	2 H	1111	Q14	Pythagoras in 2D	5	2.47	4.74	4.14	2.83	1.48	0.42	0.00
11	5MB1	1H	1511	Q11	Probability	5	1.89	5.00	3.75	3.36	2.30	1.54	1.00
12	4MA0	1H	1401	Q18	Standard form	5	1.58	3.26	1.56	0.61	0.14	0.01	0.02
13	4MA0	2 H	1305	Q22	Trigonometry	4	1.76	2.87	1.61	0.65	0.16	0.02	0.00
14	1380	2 H	1011	Q24	Bounds	3	0.92	2.85	2.25	1.15	0.29	0.04	0.01
15	4MA0	4H	1301	Q23	Functions	3	1.65	2.63	1.96	1.04	0.47	0.14	0.03
16	5AM2	2 H	1206	Q20	Distance-time / speed graphs	6	1.77	4.88	2.94	1.02	0.19	0.03	0.00
17	5AM2	2 H	1406	Q21	Proportional change	5	1.34	4.47	2.43	0.58	0.18	0.04	0.00
18	1380	2 H	906	Q23	Vectors	4	0.81	3.13	1.43	0.47	0.12	0.02	0.00
19	1MA0	2 H	1406	Q21b	Algebraic proof	3	0.38	1.88	0.95	0.29	0.07	0.02	0.00
						80							

